
A QKD protocol and its 
integration into a 
software library

Thomas Prévost - Bruno Martin - 
Olivier Alibart

1



Agenda

- Brief context introduction
- QKD: advantages and challenges (from IT PoV)
- Protocol design for unlimited distance and participants
- Formal proofs
- Randomness and security (with Yoann PELET)
- Implementing a user-friendly software library
- Conclusion: a video call secured by QKD

2



Context and personal introduction

● Thomas Prévost, IT engineer from Polytech

● PhD thesis, supervised by Bruno Martin (I3S)

● Co-supervised by Olivier Alibart

3



QKD: advantages (from IT PoV)

How to transmit a secret to someone I never met before ?

We should encrypt messages…

But how to transmit the encryption key between participants?

4



Current solution: public key cryptography

5

Public and private key

Public key

Generates random symmetric key

Symmetric key encrypted 
using public key

Decrypts symmetric key using 
private key

Share a common symetric key

5



Public key drawbacks

● Symmetric key size limitation

● Potentially vulnerable to future attacks (for example quantum algorithms)

Listens Breaks your 
encryption

“Harvest now, decrypt later” attack
6



QKD advantages

● Unlimited key size
● Perfect forward-secrecy: encryption is broken now or never

7



Main QKD challenges

Limited distance

Very expensive: mostly suited for 
cross-datacenter communication

8



The authentication problem

QKD remains vulnerable to Man-In-The-Middle (MITM) attack

Alice Bob

I’m AliceI’m Bob

9



How can you be sure of someone’s identity?

I’m Bob

How can I be 
sure that he’s 

Bob?

10



Solution: use information you already know

I’m Bob

Hum… Bob doesn’t 
look like that

11



Solution: use authentication authority

I’m Bob

I confirm 
he’s Bob

I already met the 
authority, he’s 

trustable

12



Authentication

● There is no perfect authentication process as it exists for encryption
● You must adapt your method regarding your constraints
● Protocol are designed using some assumptions, these must be chosen 

properly

13



Protocol design: constraints

● Routing the secret through nodes in case of no direct QKD link

? ?

● From 2 to n x n users on the same channel

14



Introducing a new primitive: shared secrets

Manager

There must be at least 2 
over 3 employees to 

open the safe

Employees

15



Introducing a new primitive: shared secrets

Shamir’s Shared Secret Scheme:
Let n be the number of share, k the decrypting threshold
Let P be a random polynom, deg(P) = k-1 (a + b.x + c.x^2 …)
secret = P(0)
shares = {P(1), P(2), …, P(n)}

It is possible to reconstruct secret P(0) from k shares using 
Lagrangian interpolation

16



Our protocol: recursive secret sharing between 
intermediate nodes

17

QKD independent 
secured channel

Key / secret Shamir share, 
threshold = 51%

17



How to be sure that my protocol is flawless?

18

Public and private key

Public key

Generates random symmetric key
Symmetric key encrypted 
using public key

Decrypts symmetric key using 
private key

Share a common symetric key

The public key is never authenticated, a 
Man-In-The-Middle attack is possible!!!

18



Solution: formal security provers

● Takes abstract description of cryptographic primitives and protocol:

fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key; sdec(senc(m, k), k) = m.

process

out(public_channel, senc(my_secret));

● Translates protocol into constraints set

19



Solution: formal security provers

● Tries to infer all possible attacks over the protocol

● Possible replies:
○ unsafe (with the attack)
○ cannot be proven
○ safe

● Soundness: The prover cannot reply “safe” if an attack exists

● So we are 100% certain that our protocol is secure!

20



Randomness validation of symmetric key

2 notions are hidden behind “randomness”:

● Initial source of entropy, should be unknown from the attacker (quantum 
entropy source is well suited).

● Final distribution, must “look like” random. This is what we are testing.

21



What is random? Let’s play with dice

Let’s throw 10 dice:
Would you trust me if I 
told you my dice were 
fair?

22



What is random? Let’s play with dice

Restart the experiment
And now would you 
consider my dice 
random?

WHY?

23



Randomness distribution validation

● There is no way to prove that an output distribution satisfies randomness 
requirements with 100% certainty

● What we can do is “statistical tests” over a large range of data, and verify 
that the output bits “look random”

● Some tests are better than other. We used:
○ dieharder
○ NIST
○ testU01

24



Randomness validation of QKD output bits

Does QKD generator validate statistical tests?

Thanks to Yoann PELET

No

So how could we extract cryptographic keys?

25



Privacy Amplification and min-entropy

Quantum 
generator

n bits =
0 1 0 0 0 1 1 0 1 0

I know output 
contains 60% 0s 

and 40% 1s

● Privacy Amplification is a deterministic algorithm that extract uniform 
distribution from output bits. It is run by both participants after QKD is 
finished.

● It can extract m < n random bits, due to attacker biasis knowledge. This 
is called min-entropy.

26



Randomness validation of PA output bits

Does Privacy Amplification generator validate statistical tests?

Yes

We can use the PA output bits as cryptographic keys

27



Implementing a user-friendly software library

28

Very complex 
mechanism

A good encapsulation

Very easy for 
the final 
developer



Implementing a user-friendly software library

29

● Layer over SSL/TLS (HTTPS)
● Backwards compatibility with classic HTTPS
● Followed ETSI GS QKD 014 v1.1.1
● Target: RFC (Request For Comments), ie Internet standard



Conclusion: a video call secured by QKD

30



Thanks

Do you have questions?

31


