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Agenda

- Brief context introduction
- QKD: advantages and challenges (from IT PoV)
- Protocol design for unlimited distance and participants
- Formal proofs
- Randomness and security (with Yoann PELET)
- Implementing a user-friendly software library
- Conclusion: a video call secured by QKD
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Context and personal introduction

● Thomas Prévost, IT engineer from Polytech

● PhD thesis, supervised by Bruno Martin (I3S)

● Co-supervised by Olivier Alibart
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QKD: advantages (from IT PoV)

How to transmit a secret to someone I never met before ?

We should encrypt messages…

But how to transmit the encryption key between participants?
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Current solution: public key cryptography
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Public and private key

Public key

Generates random symmetric key

Symmetric key encrypted 
using public key

Decrypts symmetric key using 
private key

Share a common symetric key
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Public key drawbacks

● Symmetric key size limitation

● Potentially vulnerable to future attacks (for example quantum algorithms)

Listens Breaks your 
encryption

“Harvest now, decrypt later” attack
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QKD advantages

● Unlimited key size
● Perfect forward-secrecy: encryption is broken now or never
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Main QKD challenges

Limited distance

Very expensive: mostly suited for 
cross-datacenter communication
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The authentication problem

QKD remains vulnerable to Man-In-The-Middle (MITM) attack

Alice Bob

I’m AliceI’m Bob
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How can you be sure of someone’s identity?

I’m Bob

How can I be 
sure that he’s 

Bob?
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Solution: use information you already know

I’m Bob

Hum… Bob doesn’t 
look like that
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Solution: use authentication authority

I’m Bob

I confirm 
he’s Bob

I already met the 
authority, he’s 

trustable
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Authentication

● There is no perfect authentication process as it exists for encryption
● You must adapt your method regarding your constraints
● Protocol are designed using some assumptions, these must be chosen 

properly

13



Protocol design: constraints

● Routing the secret through nodes in case of no direct QKD link

? ?

● From 2 to n x n users on the same channel
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Introducing a new primitive: shared secrets

Manager

There must be at least 2 
over 3 employees to 

open the safe

Employees
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Introducing a new primitive: shared secrets

Shamir’s Shared Secret Scheme:
Let n be the number of share, k the decrypting threshold
Let P be a random polynom, deg(P) = k-1 (a + b.x + c.x^2 …)
secret = P(0)
shares = {P(1), P(2), …, P(n)}

It is possible to reconstruct secret P(0) from k shares using 
Lagrangian interpolation
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Our protocol: recursive secret sharing between 
intermediate nodes
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QKD independent 
secured channel

Key / secret Shamir share, 
threshold = 51%
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How to be sure that my protocol is flawless?
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Public and private key

Public key

Generates random symmetric key
Symmetric key encrypted 
using public key

Decrypts symmetric key using 
private key

Share a common symetric key

The public key is never authenticated, a 
Man-In-The-Middle attack is possible!!!
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Solution: formal security provers

● Takes abstract description of cryptographic primitives and protocol:

fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key; sdec(senc(m, k), k) = m.

process

out(public_channel, senc(my_secret));

● Translates protocol into constraints set
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Solution: formal security provers

● Tries to infer all possible attacks over the protocol

● Possible replies:
○ unsafe (with the attack)
○ cannot be proven
○ safe

● Soundness: The prover cannot reply “safe” if an attack exists

● So we are 100% certain that our protocol is secure!
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Randomness validation of symmetric key

2 notions are hidden behind “randomness”:

● Initial source of entropy, should be unknown from the attacker (quantum 
entropy source is well suited).

● Final distribution, must “look like” random. This is what we are testing.
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What is random? Let’s play with dice

Let’s throw 10 dice:
Would you trust me if I 
told you my dice were 
fair?

22



What is random? Let’s play with dice

Restart the experiment
And now would you 
consider my dice 
random?

WHY?
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Randomness distribution validation

● There is no way to prove that an output distribution satisfies randomness 
requirements with 100% certainty

● What we can do is “statistical tests” over a large range of data, and verify 
that the output bits “look random”

● Some tests are better than other. We used:
○ dieharder
○ NIST
○ testU01
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Randomness validation of QKD output bits

Does QKD generator validate statistical tests?

Thanks to Yoann PELET

No

So how could we extract cryptographic keys?
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Privacy Amplification and min-entropy

Quantum 
generator

n bits =
0 1 0 0 0 1 1 0 1 0

I know output 
contains 60% 0s 

and 40% 1s

● Privacy Amplification is a deterministic algorithm that extract uniform 
distribution from output bits. It is run by both participants after QKD is 
finished.

● It can extract m < n random bits, due to attacker biasis knowledge. This 
is called min-entropy.
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Randomness validation of PA output bits

Does Privacy Amplification generator validate statistical tests?

Yes

We can use the PA output bits as cryptographic keys
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Implementing a user-friendly software library
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Very complex 
mechanism

A good encapsulation

Very easy for 
the final 
developer



Implementing a user-friendly software library
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● Layer over SSL/TLS (HTTPS)
● Backwards compatibility with classic HTTPS
● Followed ETSI GS QKD 014 v1.1.1
● Target: RFC (Request For Comments), ie Internet standard



Conclusion: a video call secured by QKD

30



Thanks

Do you have questions?
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